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Abstract

Coherent states on the m-sheeted complex plane are introduced and

properties llke overcompleteness and resolution of the identity are studied.

+
They are elgenstates of the operators am ,am which create and annihilate

clusters of m-partlcles. Applications of this formalism in the study of

Hamiltonlans that describe m-partlcle clustering are also considered.

Apart from the original (Glauber) coherent states which are associated

with the Weyl group, other types of coherent states associated with other

groups (e.g. SU(2), SU(I,I) etc.) have also been studied. In a recent

publication [I] we extended these ideas in a different direction and

introduced coherent states on the m-sheeted covering group of SU(I,I). From

a physical point of view It can be used for the description of m-partlcle

clustering. Here we extend the Glauber coherent states into coherent states
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in the m-sheeted complex plane. The properties of these states

(overcompleteness, resolution of the identity etc.) are explicitly

considered. Using these states we extend the Bargmann [2] analytic

representation into a new formalism that we call Bargmann analytic

representation in the m-sheet_ complex plane. Using this representation we

+

introduce new creation and annihilation operators a ,am which create andm

annihilate clusters of m particles and show that the properties of our

coherent states with respect to them, are similar to the properties of the

ordinary (Glauber) coherent states with respect to the usual creation and

+
annihilation operators a ,a.

The above ideas are used in the description of m-partlcle clustering.

which is a generalisation of the concept of pairing. They could be used to

generalise two-photon states into m-photon states with even better

properties. Some work in this direction but from a different point of view

has already been presented [3, 4]

2. Coherent states on the m-$heete4 _0mDlez plane

We consider the Riemann surface

Rm - c ]z m (1)

where C is the punctured complex plane
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C - C - Io} (2)

and Z is the discrete group of the integers modulo m. The punctured complex
m

plane C is the m-sheeted covering surface of the Riemann surface R .
m

The sheet number s(z) of a complex number z in C is defined as

s(z) - IP [mpArg(z)"

[ 2w
(3)

where IP stands for the integer part of the number, s(z) takes integer

values from 0 to m - i (modulo m).

We also consider the harmonic oscillator Hllbert space H and express it

as

m-I

l-O

(4)

H I is an infinite-dimensional subspace spanned by the number eigenstates

Hi - { I Nm + i > ; N - 0, i, 2 ...... } (5)

We call _I the projection operators on H_

N-O
I Nm + I > < Nm + I I

._ .j - 6_j "I

_ - I (6)
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We now introduce the states

Izl 2 I z_ (N,)
N-O

"_' [ _+ ,(z) > (7)

where s(z) is the sheet number of z defined in equ.(3). It is clear that if

z belongs to the zero sheet the states ImN> should be used; if z belongs to

the first sheet the states [_+i> should be used; etc. The state Iz>

belongs to the Hllbert space Hs(z). We refer to the states (7) as coherent

states on the m-sheeted complex plane. We can prove

1 1
<zl;m I z2;m>- 6 (S(Zl), s(z2)) exp - - Izxl 2m - -

2 2 Iz212m + (Zl*Z2)m]
(8)

where 6 is the kronecker delta.

In order to give a resolution of the identity for these states we first

prove a resolution of the identity within the Hllbert space HI:

f lz;m> <z;ml d_m(Z) - _ (I0)

s I

d_ m (z) -1 2 2(m-l)- _ • Izl d2z (ll)

s_ is the _-sheet and _ is the projection operator (6). Summation over

gives the resolution of the identity:

I Iz;m><z;ml d#m(Z) - I (12)
C
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The states lz;m> with z in the sheet St, form an overcomplete set within

the Hilbert space H 2.

3. _zte.ded Bareman representation on the m, sheeted complex p_ana

Bargmann [2l introduced analytic representations in the complex plane

which are based on ordinary coherent states. In refs. [5] analytic

representations in the unit disc which are based on the SU(I,I) Perelomov

coherent states, have been studied. This formalism has been extended in

ref.[l] Into analytic representations in the m-sheeted unit disc. In this

section we study an analogous extension from the Bargmann representation in

the complex plane into an analytic representation in the m-sheeted complex

plane.

We generalise the Bargmann representation by representlnK the arbitrary

(normalised) state If> with the function

f(z;m)-exp [z[ 2m <z*;m[f>- _ f_]+s(z)
N-O

mN -_
z (N_) (13)

where z takes values in C and s(z) is the sheet number of z (equ.(3)). The

f(z;m) is analytic in the interior of each sheet and has discontinuities

across the cuts C I.
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As an example we consider the number eigenstates IM - _+_> where N, I

are the integer part and remainder of M divided by m, correspondlngly. They

are represented by the function

f(z;m) - 6(2,s(z)) zmN (NI) "_ (14)

The kronecker 6(_,s(z)) ensures that this function is non-zero only in

the I sheet.

As a second example we consider the states IZo;m> of equ.(7) which are

represented by the.function

f(z;.;z o) - exp Izl 2 <z ;ml=o;.>-

6(s(z);S(Zo)) exp - - Iz ° + (ZZo)
2

(15)

We next consider the operators

-I l-m
a - m z 8 (16)
m z

+ m
a - z (17)
m

+] 1 (18)
[a m , a m -

am+ ] mN + I > - (N+L) h I m(N+l) + 2 >

a I u_l + _ > - N_ J re(N-l) + I >
m

(19)

(20)

It is seen that they act as creation and annihilation operator within
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each one of the Nilbert spaces H_.

The operator

+ -1
a a - I! z_

m m Z

+
am am ] mN + .t > - N I mN + t > (21)

can be considered as a number operator within the Hllbert space H_.

We also consider the operator

+ +

R - a a - m a a (22)
m m

X - (23)

which we call "remainder operator" or "number modulo m operator". Its

elgenstates are the number states and its elgenvalues the remalnder_ _ of the

division of the number of the state over m. The operator R commutes with the

+.

operators am, a m

+

[R, am] - JR, a m ] -0 (24)

+
Note that the operators am,a m commute with the projection operators x2 of

equ.(7):

+
[am, .'l] - [a m , w t ] -0 (25)

+
A consequence of that is that an "arbitrary" function of a ,a

m m

leaves each

of the Hilbert spaces H_ invariant in the sense that when it acts on a state

whlch belongs in H_ it produces another state which also belongs in the same
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space.

÷

We next consider the displacement operators wlch respect to the am ,a m

+ *

Dm(Zo) - exp (z ° am - z ° am] (26)

+

They displace the operators am,a m by a constant and they commute wlch

the operator R or equ.(22)

+

Dm(Zo) a m Dm (Zo) - a a - Zo (27)

+ + + *
z (28)Dm(Zo) am D (Zo) - am " o

[D m (Zo), R] - 0 (29)

We now act with the operators Dm(Z o) on the number eigenstates [l> (0

_ m-l) and get the coherent states on the m-sheeted complex plane (7):

[z - (Zo)_l/m ," a>- Vm (z o) [ I > (30)

The subscript _ indicates that among the m roots, the one which belongs

to the sheet S l should be chosen. Equ.(30) can also be writen as

Jz;m> - Dm (z m) Is(z)> (31)

where Is(z)> is number eigenstate and s(z) the sheet number of z (equ.(3)).

Using equs.(27), (31) we prove that the [z;a> are eigenstates of a
m

a Jz;m> - zmlz;m> (32)
m

+

It should be pointed out that operators similar to a m ,a m have been

considered in [6] and used in refs. [4; where the followlng states have been
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studied

{1 }°exp --Izl2 X z_ (N')_ I_>
2 N-O

(33)

They are a subset of our coherent states associated with the Hilbert space H l

with I - O; or equivalently with the zero sheet of our m-sheeted complex

plane. It has been shown in [4] that the states (33) have very interesting

quantum statistical properties.

4. m-ohoton states

We consider the Hamiltonlan

+ + *

- + • - _R + H I (34)H _ a a + • am am

+ + *

H I - N m am am + , am + z am (35)

[g, Hx] - 0 (36)

and express H as:

H-D - ma a - +OR - --

m m m m Can
(37)

We easily see that the elgenvectors and elgenvalues of H are:

(38)

The physical significance of this Hamiltonlan lles in the fact that the
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+
,a create and annihilate clusters of m particles.operators am m Pairing of

particles plays a very important role in various contexts in Physics.

Generalisatiou from pairing into m-particle clustering can be described with

various H_iltonlans. The obvious choice is

+ a+ + • a (39)H - _ a a + , ( )m * m

There are certain difficulties associated with this Hamiltonian [3} and in

any case it is useful to explore alternative models, especially if they are

based on some symmetry which can be exploited to handle these highly

non-llnear terms. In ref. [I] a Hamiltonian associated with the SU(I,I)

group, which describes m-particle clustering has been studied. In this

section the Hamiltonlan (34) which is associated with the Neyl group and

which also describes m-particle clustering, has been studied.

Coherent states on the m-sheeted complex plane have been introduced in

equ,(7). The Hilbert space has been split into m subspaces (equ.(4)) and

+

operators a m , a m
which play the role of creation and annihilation operators

in each subspace, have been introduced.
+

The a , a
m m

are different from the

+
usual creation and annihilation operators a ,a. It has been shown that our

coherent states have the usual properties of coherent states with respect to
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+

the am ,am. They are eigenstates of am (equ.(32))', and they can be

expressed as the product of the displacement operator times the lowest state

(equ.(31)).

All these ideas can be used for the description of m-partlcle

clustezing. This is a generalisation of the concept of pairing which plays

an important role in areas like squeezing in quantum optics,

superconductivity, superfluldlty, phase transistlons etc. Consequently this

formalism might be used for generalisations in all these areas. A

Hamlltonlan that describes m-particle clustering has been considered in

equ.(34) and its elgenvalues and elgenfunctlons have been calculated.
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